ORCID: https://orcid.org/0000-0003-2048-8667
(2024):
Towards Federated Learning on the Quantum Internet.
ICCS 2024: International Conference on Computational Science, Malaga, Spain, 2. - 4. Juli 2024.
Franco, Leonardo; Mulatier, Clélia de; Paszynski, Maciej; Krzhizhanovskaya, Valeria V.; Dongarra, Jack J. und Sloot, Peter M. A. (Hrsg.):
In: Computational Science - ICCS 2024 : Proceedings, Part VI,
Berlin, Heidelberg: Springer-Verlag. S. 330-344
Abstract
While the majority of focus in quantum computing has so far been on monolithic quantum systems, quantum communication networks and the quantum internet in particular are increasingly receiving attention from researchers and industry alike. The quantum internet may allow a plethora of applications such as distributed or blind quantum computing, though research still is at an early stage, both for its physical implementation as well as algorithms; thus suitable applications are an open research question. We evaluate a potential application for the quantum internet, namely quantum federated learning. We run experiments under different settings in various scenarios (e.g. network constraints) using several datasets from different domains and show that (1) quantum federated learning is a valid alternative for regular training and (2) network topology and nature of training are crucial considerations as they may drastically influence the models performance. The results indicate that more comprehensive research is required to optimally deploy quantum federated learning on a potential quantum internet.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Keywords: | Quantum Federated Learning ; Quantum Internet ; Quantum Machine Learning ; Quantum Communication Networks |
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 978-3-031-63778-0 |
| Ort: | Berlin, Heidelberg |
| Sprache: | Englisch |
| Dokumenten ID: | 128879 |
| Datum der Veröffentlichung auf Open Access LMU: | 11. Nov. 2025 10:03 |
| Letzte Änderungen: | 11. Nov. 2025 10:03 |
