ORCID: https://orcid.org/0009-0000-0894-8996; Nüßlein, Jonas
ORCID: https://orcid.org/0000-0001-7129-1237; Kölle, Michael; Gabor, Thomas
ORCID: https://orcid.org/0000-0003-2048-8667; Linnhoff-Popien, Claudia
ORCID: https://orcid.org/0000-0001-6284-9286 und Feld, Sebastian
(2024):
Solving Max-3SAT Using QUBO Approximation.
QCE 2024: IEEE International Conference on Quantum Computing and Engineering, Montréal, QC, Canada, 15. - 20. September 2024.
Culhane, Candace; Byrd, Greg; Muller, Hausi; Alexev, Yuri und Sheldon, Sarah (Hrsg.):
In: Proceedings Volume I of III IEEE Quantum Week 2024,
Bd. 1
Los Alamitos: IEEE. S. 681-691
Abstract
As contemporary quantum computers do not possess error correction, any calculation performed by these devices can be considered an involuntary approximation. To solve a problem on a quantum annealer, it has to be expressed as an instance of Quadratic Unconstrained Binary Optimization (QUBO). In this work, we thus study whether systematically approximating QUBO representations of the MAX-3SAT problem can improve the solution quality when solved on contemporary quantum hardware, compared to using exact, non-approximated QUBO representations. For a MAX-3SAT instance consisting of a 3SAT formula with n variables and m clauses, we propose a method of systematically creating approximate QUBO representations of dimension (n×n), which is significantly smaller than the QUBO matrices of any exact, non-approximated MAX-3SAT QUBO transformation. In an empirical evaluation, we demonstrate that using our QUBO approximations for solving MAX-3SAT problems on D-Wave's quantum annealer AdvantageSystem6.4 can yield better results than using state-of-the-art exact QUBO transformations. Furthermore, we demonstrate that using naive QUBO approximation methods, based on removing values from exact (n+m)×(n+m)−dimensional QUBO representations of MAX-3SAT instances, is ineffective.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Keywords: | Computers ; Performance evaluation ; Annealing ; Systematics ; Qubit ; Quantum annealing ; Hardware ; Error correction; Approximation methods ; Optimization ; Quadratic Unconstrained Binary Optimization ; Combinatorial Optimization ; Max-3SAT ; Approximation |
| Fakultät: | Mathematik, Informatik und Statistik > Informatik |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 979-8-3315-4137-8 |
| Ort: | Los Alamitos |
| Sprache: | Englisch |
| Dokumenten ID: | 128883 |
| Datum der Veröffentlichung auf Open Access LMU: | 13. Nov. 2025 14:34 |
| Letzte Änderungen: | 13. Nov. 2025 14:34 |
