ORCID: https://orcid.org/0009-0006-2750-7495; Stein, Jonas
ORCID: https://orcid.org/0000-0001-5727-9151; Altmann, Philipp
ORCID: https://orcid.org/0000-0003-1134-176X; Kölle, Michael; Linnhoff-Popien, Claudia
ORCID: https://orcid.org/0000-0001-6284-9286 und Gabor, Thomas
ORCID: https://orcid.org/0000-0003-2048-8667
(2024):
Cohesive Quantum Circuit Layer Construction with Reinforcement Learning.
QCE 2024: IEEE International Conference on Quantum Computing and Engineering, Montréal, QC, Canada, 15.- 20. September 2024.
O’Conner, Lisa (Hrsg.):
In: 2024 IEEE International Conference on Quantum Computing and Engineering (QCE),
Bd. 1
Los Alamitos: IEEE. S. 1721-1730
Abstract
While classical reinforcement learning (RL) has gained popularity for creating and optimizing variational quantum circuits (VQCs), there is still no consensus on the best model for the underlying problem of quantum architecture search (QAS). Specifically, how to effectively scope the iterative VQC adjustment steps of the RL policy remains an open question, with various approaches offering distinct benefits and challenges. In this work, we propose an RL approach that can cohesively predict entire circuit layers simultaneously, enabling rapid iterations in QAS. Our method allows for variable circuit lengths and is problem-agnostic, provided an objective function is available to guide the RL process. This makes it suitable for a broad range of applications. We evaluate our approach on the combinatorial optimization problem MaxCut, and achieve competitive results in terms of circuit solution quality when compared to both gradient-based and gradient-free circuit optimization baselines.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Keywords: | Training ; Measurement ; Qubit ; Reinforcement learning ; Logic gates ; Linear programming ; Search problems ; Iterative methods ; Quantum circuit ; Integrated circuit modeling ; Reinforcement Learning ; Quantum Computing ; Circuit Optimization ; Quantum Circuit Construction |
| Fakultät: | Mathematik, Informatik und Statistik > Informatik |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 979-8-3315-4137-8 |
| Ort: | Los Alamitos |
| Sprache: | Englisch |
| Dokumenten ID: | 128884 |
| Datum der Veröffentlichung auf Open Access LMU: | 11. Nov. 2025 16:03 |
| Letzte Änderungen: | 11. Nov. 2025 16:03 |
