ORCID: https://orcid.org/0009-0006-2750-7495 und Gabor, Thomas
ORCID: https://orcid.org/0000-0003-2048-8667
(2025):
A General Genetic Algorithm Using Natural Language Evolutionary Operators.
GECCO 2025, Genetic and Evolutionary Computation Conference, Málaga, Spain, 14. Juli 2025 - 18. Juli 2025.
Ochoa, Gabriela (Hrsg.):
In: GECCO '25 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion,
New York, NY, USA: Association for Computing Machinery. S. 699-702
Abstract
By employing large language models (LLMs) we build a general genetic algorithm, i.e., a genetic algorithm (GA) that can solve various domains without any changes to its algorithmic components. Our approach requires only a problem description in natural language and a black-box fitness function and can then handle any type of data via natural-language-based evolutionary operators that call an LLM to compute their application. The relevant prompts for the operators can be human-designed or self-optimized with similar performance results. Compared to the only other generalist GA approach, i.e., asking an LLM to write a new specific GA, our natural-language-based genetic algorithm (NaLaGA) offers not only a better class of safety (since no LLM-generated code is executed by NaLaGA) but also greatly improved results in the two example domains ``Schwefel'' and ``grid world maze''.
| Dokumententyp: | Konferenzbeitrag (Poster) |
|---|---|
| Keywords: | toappear |
| Fakultät: | Mathematik, Informatik und Statistik > Informatik |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 979-8-4007-1464-1 |
| Ort: | New York, NY, USA |
| Sprache: | Englisch |
| Dokumenten ID: | 128898 |
| Datum der Veröffentlichung auf Open Access LMU: | 04. Feb. 2026 08:59 |
| Letzte Änderungen: | 04. Feb. 2026 08:59 |
