ORCID: https://orcid.org/0000-0002-9253-9518 und Sgarabottolo, Alessandro
ORCID: https://orcid.org/0009-0001-8257-0474
(2. Oktober 2024):
Risk measures based on weak optimal transport.
In: Quantitative Finance, Bd. 25, Nr. 2: S. 163-180
Abstract
In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, divergence risk measures, uncertainty on path spaces, moment constraints, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 1469-7688 |
| Bemerkung: | Special Issue on XXIV Workshop on Quantitative Finance |
| Sprache: | Englisch |
| Dokumenten ID: | 130275 |
| Datum der Veröffentlichung auf Open Access LMU: | 17. Dez. 2025 07:41 |
| Letzte Änderungen: | 17. Dez. 2025 07:41 |
