Abstract
The use of the multinomial logit model is typically restricted to applications with few predictors, because in high-dimensional settings maximum likelihood estimates tend to deteriorate. In this paper we are proposing a sparsity-inducing penalty that accounts for the special structure of multinomial models. In contrast to existing methods, it penalizes the parameters that are linked to one variable in a grouped way and thus yields variable selection instead of parameter selection. We develop a proximal gradient method that is able to efficiently compute stable estimates. In addition, the penalization is extended to the important case of predictors that vary across response categories. We apply our estimator to the modeling of party choice of voters in Germany including voter-specific variables like age and gender but also party-specific features like stance on nuclear energy and immigration.
Dokumententyp: | Paper |
---|---|
Publikationsform: | Submitted Version |
Keywords: | Logistic regression, Multinomial logit model, Variable selection, Lasso, Group Lasso, CATS Lasso. |
Fakultät: | Mathematik, Informatik und Statistik
Mathematik, Informatik und Statistik > Statistik Mathematik, Informatik und Statistik > Statistik > Technische Reports |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-13114-3 |
Sprache: | Englisch |
Dokumenten ID: | 13114 |
Datum der Veröffentlichung auf Open Access LMU: | 21. Jun. 2012, 20:40 |
Letzte Änderungen: | 13. Aug. 2024, 11:44 |
Alle Versionen dieses Dokumentes
- Variable Selection in General Multinomial Logit Models. (deposited 21. Jun. 2012, 20:40) [momentan angezeigt]