Abstract
The project GLOWA-Danube (http://www.glowa-danube.de) aimed at investigating the manifold consequences of Global Change on regional water resources in the Upper Danube Basin. In order to achieve this task, an interdisciplinary, university-based network of experts developed the integrative Decision Support System OpenDanubia (OD). The common base for implementing and coupling the various scientific model components is a generic framework, which provides the coordination of the coupled models that run in parallel exchanging iteratively data via their interfaces. The OD framework takes care of technical aspects, such as ordered data exchange between sub-models, data aggregation, data output, model parallelization and data distribution over the network, which means that model developers do not have to be concerned about complexities evolving from coupling their models. Within this framework the sub-model NaturalEnvironment, representing a land surface model, was developed and implemented. The object-oriented design of this sub-model facilitates a plain, logical representation of the actual physical processes simulated by the sub-model. Physical processes to be modelled are organized in naturally ordered, exchangeable lists that are executed on each spatial computation unit for each modelling time step, depending on their land cover. The type of land cover to be simulated on each freely defined spatial unit is distinguished by one of the three types aquatic, terrestrial and glacier. Additionally, the type terrestrial is influenced by dynamic land use changes which can be triggered e.g. by the socio-economic OD sub-model Farming. This paper presents the basic design of the open source (GPL'ed) OD framework and highlights the implementation of the sub-model NaturalEnvironment within this framework, as well as its interactions with other components included in OD.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Keywords: | land surface model, framework, object-oriented, open source |
Faculties: | Geosciences > Department of Geography > Physical Geography and Remote Sensing |
Subjects: | 500 Science > 550 Earth sciences and geology |
URN: | urn:nbn:de:bvb:19-epub-14096-2 |
Language: | English |
Item ID: | 14096 |
Date Deposited: | 08. Oct 2012, 09:04 |
Last Modified: | 04. Nov 2020, 12:54 |