Abstract
In the context of Gaussian Graphical Models (GGMs) with high- dimensional small sample data, we present a simple procedure to esti- mate partial correlations under the constraint that some of them are strictly zero. This method can also be extended to covariance selection. If the goal is to estimate a GGM, our new procedure can be applied to re-estimate the partial correlations after a first graph has been esti- mated in the hope to improve the estimation of non-zero coefficients. In a simulation study, we compare our new covariance selection procedure to existing methods and show that the re-estimated partial correlation coefficients may be closer to the real values in important cases.
| Dokumententyp: | Paper |
|---|---|
| Publikationsform: | Preprint |
| Keywords: | Gaussian Graphical Models, high dimensional data, partial correlation estimation, covariance selection. |
| Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften |
| URN: | urn:nbn:de:bvb:19-epub-14280-9 |
| Sprache: | Englisch |
| Dokumenten ID: | 14280 |
| Datum der Veröffentlichung auf Open Access LMU: | 04. Dez. 2012 18:22 |
| Letzte Änderungen: | 04. Nov. 2020 12:54 |

