Logo Logo
Switch Language to German

Egea, Virginia; Zahler, Stefan; Rieth, Nicole; Neth, Peter; Popp, Tanja; Kehe, Kai; Jochum, Marianne and Ries, Christian (2012): Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling. In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 6, E309-E316 [PDF, 1MB]

[thumbnail of pnas.201115083.pdf]
Download (1MB)


Tissue inhibitor of metalloproteinases 1 (TIMP-1) is a matrix metalloproteinase (MMP)-independent regulator of growth and apoptosis in various cell types. The receptors and signaling pathways that are involved in the growth factor activities of TIMP-1, however, remain controversial. RNA interference of TIMP-1 has revealed that endogenous TIMP-1 suppresses the proliferation, metabolic activity, and osteogenic differentiation capacity of human mesenchymal stem cells (hMSCs). The knockdown of TIMP-1 in hMSCs activated the Wnt/β-catenin signaling pathway as indicated by the increased stability and nuclear localization of β-catenin in TIMP-1–deficient hMSCs. Moreover, TIMP-1 knockdown cells exhibited enhanced β-catenin transcriptional activity, determined by Wnt/β-catenin target gene expression analysis and a luciferase-based β-catenin– activated reporter assay. An analysis of a mutant form of TIMP-1 that cannot inhibit MMP indicated that the effect of TIMP-1 on β-catenin signaling is MMP independent. Furthermore, the binding of CD63 to TIMP-1 on the surface of hMSCs is essential for the TIMP-1–mediated effects on Wnt/β-catenin signaling. An array analysis of microRNAs (miRNAs) and transfection studies with specific miRNA inhibitors and mimics showed that let-7f miRNA is crucial for the regulation of β-catenin activity and osteogenic differentiation by TIMP-1. Let-7f was up-regulated in TIMP-1–depleted hMSCs and demonstrably reduced axin 2, an antagonist of β-catenin stability. Our results demonstrate that TIMP-1 is a direct regulator of hMSC functions and reveal a regulatory network in which let-7f modulates Wnt/β-catenin activity.

Actions (login required)

View Item View Item