Abstract
We used tip-enhanced Raman spectroscopy to study defect induced D-band Raman scattering in metallic single-walled carbon nanotubes with a spatial resolution of 15 nm. The spatial extent of the D-band signal in the vicinity of localized defects is visualized and found to be about 2 nm only. Using the strong optical fields underneath the tip, we photogenerate localized defects and derive a relation between defect density and resulting D-band intensity.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Chemistry and Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-14503-8 |
ISSN: | 0003-6951 |
Language: | English |
Item ID: | 14503 |
Date Deposited: | 31. Jan 2013, 09:42 |
Last Modified: | 04. Nov 2020, 12:54 |