Abstract
In this paper we discuss maximum likelihood estimation when some observations are missing in mixed graphical interaction models assuming a conditional Gaussian distribution as introduced by Lauritzen&Wermuth (1989). For the saturated case ML estimation with missing values via the EM algorithm has been proposed by Little&Schluchter (1985). We expand their results to the special restrictions in graphical models and indicate a more efficient way to compute the E--step. The main purpose of the paper is to show that for certain missing patterns the computational effort can considerably be reduced.
| Item Type: | Paper |
|---|---|
| Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
| Subjects: | 500 Science > 510 Mathematics |
| URN: | urn:nbn:de:bvb:19-epub-1469-3 |
| Language: | English |
| Item ID: | 1469 |
| Date Deposited: | 04. Apr 2007 |
| Last Modified: | 04. Nov 2020 12:45 |

