Abstract
We are dealing with series of events occurring at random times tau_n and carrying further quantitive information xi_n . Examples are sequences of extrasystoles in ECGrecords. We will present two approaches for analyzing such (typically long) sequences (tau_n, xi_n ), n = 1, 2, ... . (i) A point process model is based on an intensity of the form alpha(t) * b_t(theta), t >= 0, with b_t a stochastic intensity of the selfexciting type. (ii) A time series approach is based on a transitional GLM. The conditional expectation of the waiting time sigma_{n+1} = tau_{n+1} - tau_n is set to be v(tau_n) * h(eta_n(theta)), with h a response function and eta_n a regression term. The deterministic functions alpha and v, respectively, describe the long-term trend of the process.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1503-0 |
Sprache: | Englisch |
Dokumenten ID: | 1503 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |