In: PLOS Biology
8(5), e1000373
[PDF, 2MB]
Abstract
Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-15090-4 |
ISSN: | 1545-7885 |
Annotation: | This work was supported by grants from the Deutsche Forschungsgemeinschaft to BB and MG (BE 4182/1-3 and GO 640/9-1) and to TS (SCHR 1142/1-1), the Bavarian State Ministry of Sciences, Research, and the Arts (ForNeuroCell) to BB and MG, and the Exzellenzcluster 114 Munich Center for Integrated Protein Science Munich (CIPSM) , the SFB 596 , the SFB 870 , and European Transcriptome, Regulome & Cellular Commitment Consortium (EUTRACC) to MG |
Language: | English |
Item ID: | 15090 |
Date Deposited: | 06. May 2013, 10:41 |
Last Modified: | 04. Nov 2020, 12:55 |