Abstract
From a theoretical perspective, we consider the properties of the maximum likelihood estimator of the correlation coefficient, principally regarding precision, in various types of bivariate model which are popular in the applied literature. The models are: "Full-Full", in which both variables are fully observed; "Censored-Censored", in which both of the variables are censored at zero; and finally, "Binary-Binary", in which both variables are observed only in sign. For analytical convenience, the underlying bivariate distribution which we assume in each of these cases is the bivariate logistic. A central issue is the extent to which censoring reduces the level of Fisher's Information pertaining to the correlation coefficient, and therefore reduces the precision with which this important parameter can be estimated.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
Language: | English |
Item ID: | 1515 |
Date Deposited: | 04. Apr 2007 |
Last Modified: | 11. May 2017, 15:09 |