In: PLOS ONE
8(3), e57675
[PDF, 1MB]
Abstract
Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a "domino days spreading" branching process in which successive amplifications may interact positively.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Biologie > Department Biologie I |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik) |
URN: | urn:nbn:de:bvb:19-epub-15210-6 |
ISSN: | 1932-6203 |
Sprache: | Englisch |
Dokumenten ID: | 15210 |
Datum der Veröffentlichung auf Open Access LMU: | 21. Mai 2013, 12:02 |
Letzte Änderungen: | 04. Nov. 2020, 12:55 |