Logo Logo
Switch Language to German

Winkler, Gerhard; Aurich, Volker; Hahn, Klaus; Martin, A. and Rodenacker, K. (1998): Noise Reduction in Images: Some Recent Edge-Preserving Methods. Collaborative Research Center 386, Discussion Paper 138 [PDF, 3MB]

[thumbnail of paper_138.pdf]
Download (3MB)


We introduce some recent and very recent smoothing methods which focus on the preservation of boundaries, spikes and canyons in presence of noise. We try to point out basic principles they have in common; the most important one is the robustness aspect. It is reflected by the use of `cup functions' in the statistical loss functions instead of squares; such cup functions were introduced early in robust statistics to down weight outliers. Basically, they are variants of truncated squares. We discuss all the methods in the common framework of `energy functions', i.e we associate to (most of) the algorithms a `loss function' in such a fashion that the output of the algorithm or the `estimate' is a global or local minimum of this loss function. The third aspect we pursue is the correspondence between loss functions and their local minima and nonlinear filters. We shall argue that the nonlinear filters can be interpreted as variants of gradient descent on the loss functions. This way we can show that some (robust) M-estimators and some nonlinear filters produce almost the same result.

Actions (login required)

View Item View Item