Abstract
First we explain the interplay between robust loss functions, nonlinear filters and Bayes smoothers for edge-preserving image reconstruction. Then we prove the surprising fact that maximum posterior smoothers are nonlinear filters. A (generalized) Potts prior for segmentation and piecewise smoothing of noisy signals and images is adopted. For one-dimensional signals, an exact solution for the maximum posterior mode - based on dynamic programming - is derived. After some results on the performance of nonlinear filters on jumps and ramps we finally introduce a cascade of nonlinear filters with varying scale parameters and discuss the choice of parameters for segmentation and piecewise smoothing.
Dokumententyp: | Paper |
---|---|
Keywords: | Image processing, jump preserving smoothing, filters, Potts model |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1535-7 |
Sprache: | Englisch |
Dokumenten ID: | 1535 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |