Abstract
Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology. Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially inhomogeneous activating agents. We determine the conditions under which wave-front localization is possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these two sources of destabilization. DOI: 10.1103/PhysRevLett.110.038102
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-16008-0 |
ISSN: | 0031-9007 |
Place of Publication: | ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Language: | English |
Item ID: | 16008 |
Date Deposited: | 25. Jul 2013, 10:01 |
Last Modified: | 08. May 2024, 08:18 |