
Abstract
Length regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors like kinesin-8, which move along MTs and also act as depolymerases, are known as key players in MT dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a stochastic model accounting for the interplay between polymerization kinetics and motor-induced depolymerization. We determine the dependence of MT length and variance on rate constants and motor concentration. Moreover, our analyses reveal how collective phenomena lead to a well-defined MT length.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-16009-9 |
ISSN: | 0031-9007 |
Place of Publication: | ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Language: | English |
Item ID: | 16009 |
Date Deposited: | 25. Jul 2013 07:28 |
Last Modified: | 07. Sep 2021 09:30 |