Abstract
We investigate a driven two-channel system where particles on different lanes mutually obstruct each other's motion, extending an earlier model by Popkov and Peschel Phys. Rev. E 64, 026126 (2001)]. This obstruction may occur in biological contexts due to steric hinderance where motor proteins carry cargos by "walking" on microtubules. Similarly, the model serves as a description for classical spin transport where charged particles with internal states move unidirectionally on a lattice. Three regimes of qualitatively different behavior are identified, depending on the strength of coupling between the lanes. For small and large coupling strengths the model can be mapped to a one-channel problem, whereas a rich phase behavior emerges for intermediate ones. We derive an approximate but quantitatively accurate theoretical description in terms of a one-site cluster approximation, and obtain insight into the phase behavior through the current-density relations combined with an extremal-current principle. Our results are confirmed by stochastic simulations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-16091-4 |
ISSN: | 1539-3755 |
Ort: | ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Sprache: | Englisch |
Dokumenten ID: | 16091 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Jul. 2013, 07:06 |
Letzte Änderungen: | 08. Mai 2024, 08:19 |