Abstract
We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" l(f), defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-16100-1 |
ISSN: | 1539-3755 |
Place of Publication: | ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Language: | English |
Item ID: | 16100 |
Date Deposited: | 29. Jul 2013, 07:14 |
Last Modified: | 08. May 2024, 08:19 |