
Abstract
Nanoscale and microscale confinement of biopolymers naturally occurs in cells and has been recently achieved in artificial structures designed for nanotechnological applications. Here, we present an extensive theoretical investigation of the conformations and shape of a biopolymer with varying stiffness confined to a narrow channel. Combining scaling arguments, analytical calculations, and Monte Carlo simulations, we identify various scaling regimes where master curves quantify the functional dependence of the polymer conformations on the chain stiffness and strength of confinement.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-16101-6 |
ISSN: | 1539-3755 |
Place of Publication: | ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Language: | English |
Item ID: | 16101 |
Date Deposited: | 26. Jul 2013 12:51 |
Last Modified: | 07. Sep 2021 09:41 |