Abstract
Generalized linear models (GLMs) and semiparametric extensions provide a flexible framework for analyzing the claims process in non-life insurance. Currently, most applications are still based on traditional GLMs, where covariate effects are modelled in form of a linear predictor. However, these models may already be too restrictive if nonlinear effects of metrical covariates are present. Moreover, although data are often collected within longer time periods and come from different geographical regions, effects of space and time are usually totally neglected. We provide a Bayesian semiparametric approach, which allows to simultaneously incorporate effects of space, time and further covariates within a joint model. The method is applied to analyze costs of hospital treatment and accommodation for a large data set from a German health insurance company.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1618-7 |
Language: | English |
Item ID: | 1618 |
Date Deposited: | 05. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |