Abstract
We estimate semiparametric regression models of chronic undernutrition (stunting) using the 1992 Demographic and Health Surveys (DHS) from Tanzania and Zambia. We focus particularly on the influence of the child's age, the mother's body mass index, and spatial influences on chronic undernutrition. Conventional parametric regression models are not flexible enough to cope with possibly nonlinear effects of the continuous covariates and cannot flexibly model spatial influences. We present a Bayesian semiparametric analysis of the effects of these two covariates on chronic undernutrition. Moreover, we investigate spatial determinants of undernutrition in these two countries. Compared to previous work with a simple fixed effects approach for the influence of provinces, we model small scale district specific effects using flexible spatial priors. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques.
Dokumententyp: | Paper |
---|---|
Keywords: | developing countries; semiparametric Bayesian inference; spatial models; undernutrition |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1626-2 |
Sprache: | Englisch |
Dokumenten ID: | 1626 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |