Abstract
The Shilkret integral is maxitive (i.e., the integral of a pointwise supremum of functions is the supremum of their integrals), but defined only for nonnegative functions. In the present paper, some properties of this integral (such as subadditivity and a law of iterated expectations) are studied, in comparison with the additive and Choquet integrals. Furthermore, the definition of a maxitive integral for all real functions is discussed. In particular, a convex, maxitive integral is introduced and some of its properties are derived.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-16283-6 |
Sprache: | Englisch |
Dokumenten ID: | 16283 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Sep. 2013, 19:59 |
Letzte Änderungen: | 04. Nov. 2020, 12:57 |