
Abstract
Model selection in graphical models is still not fully investigated. The main difficulty lies in the search space of all possible models which grows more than exponentially with the number of variables involved. Here, genetic algorithms seem to be a reasonable strategy to find good fitting models for a given data set. In this paper, we adapt them to the problem of model search in graphical models and discuss their performance by conducting simulation studies.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1658-9 |
Item ID: | 1658 |
Date Deposited: | 05. Apr 2007 |
Last Modified: | 29. Apr 2016, 08:50 |