
Abstract
Background/Aims: Methods of intermittent hemodialysis (IHD) dose quantification in acute renal failure (ARF) are not well defined. This observational study was designed to evaluate the impact of disease activity on delivered single pool Kt/V-urea in ARF patients. Methods: 100 patients with severe ARF (acute intrinsic renal disease in 18 patients, nephrotoxic acute tubular necrosis in 38 patients, and septic ARF in 44 patients) were analyzed during four consecutive sessions of IHD, performed for 3.5-5 h every other day or daily. Target IHD dose was a single pool Kt/V-urea of 1.2 or more per dialysis session for all patients. Prescribed Kt/V-urea was calculated from desired dialyzer clearance (K), desired treatment time (t) and anthropometric estimates for urea distribution volume (V). The desired clearance (K) was estimated from prescribed blood flow rate and manufacturer's charts of in vivo data obtained in maintenance dialysis patients. Delivered single pool Kt/V-urea was calculated using the Daugirdas equation. Results: None of the patients had prescription failure of the target dose. The delivered IHD doses were substantially lower than the prescribed Kt/V values, particularly in ARF patients with sepsis/septic shock. Stratification according to disease severity revealed that all patients with isolated ARF, but none with 3 or more organ failures and none who needed vasopressive support received the target dose. Conclusion: Prescription of target IHD dose by single pool Kt/V-urea resulted in suboptimal dialysis dose delivery in critically ill patients. Numerous patient-related and treatment-immanent factors acting in concert reduced the delivered dose. Copyright (C) 2007 S. Karger AG, Basel.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-16605-5 |
ISSN: | 1660-2110 |
Alliance/National Licence: | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. |
Language: | English |
Item ID: | 16605 |
Date Deposited: | 29. Aug 2013 09:59 |
Last Modified: | 04. Nov 2020 12:58 |