Abstract
This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis and as an extension to the early paper of Little (1992).
Dokumententyp: | Paper |
---|---|
Keywords: | missing data mechanism, regression analysis, generalized additive models, imputation, MSE-superiority |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1664-2 |
Sprache: | Englisch |
Dokumenten ID: | 1664 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |