Logo Logo
Switch Language to English
Künzel, Thomas und Strauch, Konstantin (2012): Parameter Estimation and Quantitative Parametric Linkage Analysis with GENEHUNTER-QMOD. In: Human Heredity, Nr. 4: S. 208-219




Objective: We present a parametric method for linkage analysis of quantitative phenotypes. The method provides a test for linkage as well as an estimate of different phenotype parameters. We have implemented our new method in the program GENEHUNTER-QMOD and evaluated its properties by performing simulations. Methods: The phenotype is modeled as a normally distributed variable, with a separate distribution for each genotype. Parameter estimates are obtained by maximizing the LOD score over the normal distribution parameters with a gradient-based optimization called PGRAD method. Results: The PGRAD method has lower power to detect linkage than the variance components analysis (VCA) in case of a normal distribution and small pedigrees. However, it outperforms the VCA and Haseman-Elston regression for extended pedigrees, nonrandomly ascertained data and non-normally distributed phenotypes. Here, the higher power even goes along with conservativeness, while the VCA has an inflated type I error. Parameter estimation tends to underestimate residual variances but performs better for expectation values of the phenotype distributions. Conclusion: With GENEHUNTER-QMOD, a powerful new tool is provided to explicitly model quantitative phenotypes in the context of linkage analysis. It is freely available at http://www.helmholtz-muenchen.de/genepi/downloads. Copyright (C) 2012 S. Karger AG, Basel