Logo Logo
Hilfe
Hilfe
Switch Language to English

Fahrmeir, Ludwig; Kneib, Thomas und Lang, S. (2003): Penalized additive regression for space-time data: a Bayesian perspective. Sonderforschungsbereich 386, Discussion Paper 305 [PDF, 753kB]

[thumbnail of paper_305.pdf]
Vorschau
Download (753kB)

Abstract

We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function.

Dokument bearbeiten Dokument bearbeiten