Abstract
In this paper we highlight a data augmentation approach to inference in the Bayesian logistic regression model. We demonstrate that the resulting conditional likelihood of the regression coefficients is multivariate normal, equivalent to a standard Bayesian linear regression, which allows for efficient simulation using a block Gibbs sampler. We illustrate that the method is particularly suited to problems in covariate set uncertainty and random effects models.
| Dokumententyp: | Paper |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| URN: | urn:nbn:de:bvb:19-epub-1688-5 |
| Dokumenten ID: | 1688 |
| Datum der Veröffentlichung auf Open Access LMU: | 10. Apr. 2007 |
| Letzte Änderungen: | 29. Apr. 2016 08:50 |

