EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.
Brezger, Andreas; Lang, S. (2003): Generalized structured additive regression based on Bayesian P-splines. Sonderforschungsbereich 386, Discussion Paper 321




Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX.