Abstract
Overdispersion in count data regression is often caused by neglection or inappropriate modelling of individual heterogeneity, temporal or spatial correlation, and nonlinear covariate effects. In this paper, we develop and study semiparametric count data models which can deal with these issues by incorporating corresponding components in structured additive form into the predictor. The models are fully Bayesian and inference is carried out by computationally efficient MCMC techniques. In a simulation study, we investigate how well the different components can be identified with the data at hand. The approach is applied to a large data set of claim frequencies from car insurance.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1712-0 |
Language: | English |
Item ID: | 1712 |
Date Deposited: | 10. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |