Abstract
This paper aims at proposing suitable statistical tools to address heterogeneity in repeated measures, within a Multiple Sclerosis (MS) longitudinal study. Indeed, due to unobservable sources of heterogeneity, modelling the effect of covariates on MS severity evolves as a very difficult feature. Bayesian P-Splines are suggested for modelling non linear smooth effects of covariates within generalized additive models. Thus, based on a pooled MS data set, we show how extending Bayesian P-splines to mixed effects models (Lang and Brezger, 2001), represents an attractive statistical approach to investigate the role of prognostic factors in affecting individual change in disability.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1728-8 |
Sprache: | Englisch |
Dokumenten ID: | 1728 |
Datum der Veröffentlichung auf Open Access LMU: | 10. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |