
Abstract
Background: The chemical inertness of hydroxyethyl starch (HES) might cause interferences of the colloid with a variety of laboratory tests. We aimed to evaluate potential influences of HES 130/0.4, the newest HES type, on several common hematology and clinical chemistry parameters. Methods and results: A convenient sample of 25 patients scheduled for rheological therapy with 500 mL 6% HES 130/0.4 was evaluated. Blood samples were drawn before and after colloid application. Comparing pre- and post-infusion values of a battery of laboratory tests (i.e., hematology and hemostasis parameters, electrolytes, enzymes, kidney and metabolic parameters, lipids, etc.) in time course, a median difference greater than the reference change value for a specific parameter was considered clinically relevant. Among all parameters tested, only serum amylase activity displayed a clinically relevant difference between pre- and post-infusion values (median increase of 85% due to HES administration). By applying in vitro experiments, we demonstrated that serum amylase values obtained in the samples diluted in a 1:1 ratio with HES 130/0.4 and in samples diluted in a 1:1 ratio with 0.9% NaCl displayed a negligible median difference of 3%. Conclusions: The in vivo effect of HES 130/0.4 administration on serum amylase activity observed in our study was pharmacological (real) in nature. With the exception of the influence of HES 130/0.4 on amylase activity, the effects of HES 130/0.4 on other parameters tested in this study can be interpreted as having no clinical relevance.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-17764-3 |
ISSN: | 1434-6621 |
Alliance/National Licence: | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. |
Language: | English |
Item ID: | 17764 |
Date Deposited: | 02. Jan 2014, 10:31 |
Last Modified: | 04. Nov 2020, 12:59 |