Abstract
Low signal to noise ratio (SNR) experiments in diffusion tensor imaging (DTI) give key information about tracking and anisotropy, e. g., by measurements with small voxel sizes or with high b values. However, due to the complicated and dominating impact of thermal noise such data are still seldom analysed. In this paper Monte Carlo simulations are presented which investigate the distributions of noise for different DTI variables in low SNR situations. Based on this study a strategy for the application of spatial smoothing is derived. Optimal prerequisites for spatial filters are unbiased, bell shaped distributions with uniform variance, but, only few variables have a statistics close to that. To construct a convenient filter a chain of nonlinear Gaussian filters is adapted to peculiarities of DTI and a bias correction is introduced. This edge preserving three dimensional filter is then validated via a quasi realistic model. Further, it is shown that for small sample sizes the filter is as effective as a maximum likelihood estimator and produces reliable results down to a local SNR of approximately 1. The filter is finally applied to very recent data with isotropic voxels of the size 1×1×1mm^3 which corresponds to a spatially mean SNR of 2.5. This application demonstrates the statistical robustness of the filter method. Though the Rician noise model is only approximately realized in the data, the gain of information by spatial smoothing is considerable.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1778-5 |
Language: | English |
Item ID: | 1778 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |