Logo Logo
Switch Language to English
Popp, O.; Heidinger, M.; Ruiz-Heinrich, L.; Ries, C.; Jochum, M.; Gil-Parrado, S. (2003): The calpastatin-derived calpain inhibitor CP1B reduces mRNA expression of matrix metalloproteinase-2 and-9 and invasion by leukemic THP-1 cells. In: Biological Chemistry, Vol. 384, Nr. 6: S. 951-958


The ubiquitous proteases μ- and m-calpain are Ca2+-dependent cysteine endopeptidases. Besides involvement in a variety of physio(patho)logical processes, recent studies suggest a pivotal role of calpains in differentiation of hematopoietic cells and tumor cell invasion. However, the precise actions of calpains and their endogenous inhibitor, calpastatin, in these processes are only partially understood. Here we have studied the role of the calpain/calpastatin system in the invasion of leukemic cells under basal and differentiationstimulating conditions. To further differentiate the human leukaemic cell line THP-1 (monocytic), the cells were treated for 24 hours with the differentiationstimulating reagents phorbol 12-myristate 13-acetate (PMA) and dimethyl sulfoxide (DMSO). Macrophage and granulocytelike differentiation was confirmed by induction of vimentin expression as well as by microscopic and fluorescence assisted cytometric analysis. Extracellular matrix (ECM) invasion of both the basal and differentiation stimulated cells in a Matrigel assay was inhibited by preincubation of the cells with the specific calpain inhibitor CP1B for 24 hours. Inhibition of invasiveness correlated with decreased mRNA expression and secretion of the matrix metalloproteinases MMP-2 and MMP-9. In contrast, addition of CP1B only during the invasion process did neither influence transmigration nor MMP release. This is the first report showing that the calpain/calpastatin system mediates MMPmRNA expression of the leukemic THP-1 cells and as a consequence their invasiveness.