DeutschClear Cookie - decide language by browser settings
Heudorfer, L.; Hohe, J.; Faber, S.; Englmeier, K.-H.; Reiser, M.; Eckstein, F. (2000): Präzision MRT-basierter Gelenkflächen- und Knorpeldickenanalysen im Kniegelenk bei Verwendung einer schnellen Wasseranregungs-Sequenz und eines semiautomatischen Segmentierungs-Algorithmus. In: Biomedizinische Technik, Vol. 45, No. 11: pp. 304-310




The aim of this study was to analyse the precision of three-dimensional joint surface and cartilage thickness measurements in the knee, using a fast, high-resolution water-excitation sequence and a semiautomated segmentation algorithm. The knee joint of 8 healthy volunteers, aged 22 to 29 years, were examined at a resolution of 1.5 mm x 0.31 mm x 0.31 mm, with four sagittal data sets being acquired after repositioning the joint. After semiautomated segmentation with a B-spline Snake algorithm and 3D reconstruction of the patellar, femoral and tibial cartilages, the joint surface areas (triangulation), cartilage volume, and mean and maximum thickness (Euclidean distance transformation) were analysed, independently of the orientation of the sections. The precision (CV%) for the surface areas was 2.1 to 6.6%. The mean cartilage thickness and cartilage volume showed coefficients of 1.9 to 3.5% (except for the femoral condyles), the value for the medial femoral condyle being 9.1%, and for the lateral condyle 6.5%. For maximum thickness, coefficients of between 2.6 and 5.9% were found. In the present study we investigate for the first time the precision of MRI-based joint surface area measurements in the knee, and of cartilage thickness analyses in the femur. Using a selective water-excitation sequence, the acquisition time can be reduced by more than 50%. The poorer precision in the femoral condyles can be attributed to partial Volume effects that occur at the edges of the joint surfaces with a sagittal image protocol. Since MRI is non-invasive, it is highly suitable for examination of healthy subjects (generation of individual finite element models, analysis of functional adaptation to mechanical stimulation, measurement of cartilage deformation in vivo) and as a diagnostic tool for follow-up, indication for therapy, and objective evaluation of new therapeutic agents in osteoarthritis.