Abstract
We propose a unified framework for equity and credit risk modeling, where the default time is a doubly stochastic random time with intensity driven by an underlying affine factor process. This approach allows for flexible interactions between the defaultable stock price, its stochastic volatility and the default intensity, while maintaining full analytical tractability. We characterize all risk-neutral measures which preserve the affine structure of the model and show that risk management as well as pricing problems can be dealt with efficiently by shifting to suitable survival measures. As an example, we consider a jump- to-default extension of the Heston stochastic volatility model.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Submitted Version |
Keywords: | Default risk; Affine processes; Stochastic volatility; Market price of risk; Change of measure; Jump-to-default |
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 300 Sozialwissenschaften > 310 Statistiken
300 Sozialwissenschaften > 330 Wirtschaft 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-18010-1 |
Sprache: | Englisch |
Dokumenten ID: | 18010 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jan. 2014, 16:34 |
Letzte Änderungen: | 12. Sep. 2024, 13:33 |
Literaturliste: | [1] E. Bayraktar, Pricing options on defaultable stocks, Appl. Math. Finance 15 (2008) 277–304. [2] L. Campi, S. Polbennikov, A. Sbuelz, Systematic equity-based credit risk: a CEV model with jump to default, J. Econom. Dynam. Control 33 (2009) 93–108. [3] P. Carr, V. Linetsky, A jump to default extended CEV model: an application of Bessel processes, Finance Stoch. 10 (2006) 303–330. [4] P. Carr, D.B. Madan, Local volatility enhanced by a jump to default, SIAM J. Financial Math. 1 (2010) 2–15. [5] P. Carr, W. Schoutens, Hedging under the Heston model with jump-to-default, Int. J. Theor. Appl. Finance 11 (2008) 403–414. [6] P. Carr, L. Wu, Stock options and credit default swaps: a joint framework for valuation and estimation, J. Financ. Econom. 8 (2010) 409–449. [7] P. Cheridito, A. Wugalter, Pricing and hedging in affine models with possibility of default, SIAM J. Financial Math. 3 (2012) 328–350. [8] T.K. Chung, Y.K. Kwok, Equity-credit modeling under affine jump-diffusion models with jump-to-default, in: S. Chen, M. Kaboudan (Eds.), Handbook on Computational Economics and Finance, Oxford University Press, Oxford, 2012 (forthcoming). [9] J. Campbell, G. Taksler, Equity volatility and corporate bond yields, J. Finance LVIII (2003) 2321–2349. [10] M. Cremers, J. Driessen, P. Maenhout, D. Weinbaum, Individual stock-option prices and credit spreads, J. Bank. Financ. 32 (2008) 2706–2715. [11] D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003) 984–1053. [12] M. Keller-Ressel, Affine Processes—Theory and Applications in Finance, Ph.D. Thesis, TU Wien, 2009. [13] R.M.Gaspar,T.Schmidt,CDOs in the light of the current crisis, in: C.Gourieroux, M.Jeanblanc(Eds.), FinancialRisks: New Developments in Structured Products and Credit Derivatives, Economica, Paris, 2009, pp. 33–48. [14] D. Duffie, Credit risk modeling with affine processes, J. Bank. Financ. 29 (2005) 2751–2802. [15] C. Fontana, Four Essays in Financial Mathematics, Ph.D. Thesis, University of Padova, 2012. [16] S.L. Heston, A closed-form solution for options with stochastic volatility, with applications to bond and currency options, Rev. Financ. Stud. 6 (1993) 327–343. [17] A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management—Concepts, Techniques and Tools, Princeton University Press, Princeton, 2005. [18] T.R. Bielecki, M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer, Berlin–Heidelberg–New York, 2002. [19] C.Fontana,Credit risk and incomplete information: a filtering framework for pricing and risk management, in: C.Perna, M.Sibillo (Eds.),Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer, Milan, 2012, pp. 193–201. [20] C. Fontana, W.J. Runggaldier, Credit risk and incomplete information: filtering and EM parameter estimation, Int. J. Theor. Appl. Finance 13 (2010) 683–715. [21] D. Filipović, Term-Structure Models: A Graduate Course, Springer, Berlin–Heidelberg, 2009. [22] D. Duffie, R. Kan, A yield-factor model of interest rates, Math. Finance 6 (1996) 379–406. [23] Q. Dai, K.J. Singleton, Specification analysis of affine term structure models, J. Finance LV (2000) 1943–1978. [24] P. Cheridito, D. Filipović, R.L. Kimmel, A note on the Dai–Singleton canonical representation of affine term structure models, Math. Finance 20 (2010) 509–519. [25] R. Ahlip, M. Rutkowski, Forward start options under stochastic volatility and stochastic interest rate, Int. J. Theor. Appl. Finance 12 (2009) 209–225. [26] D. Duffie, J. Pan, K.J. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000) 1343–1376. [27] P. Christoffersen, S. Heston, K. Jacobs, The shape and the term structure of the index option smirk: why multifactor stochastic volatility models work so well, Manage. Sci. 55 (2009) 1914–1932. [28] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994) 463–520. [29] P. Cheridito, D. Filipović, M. Yor, Equivalent and absolutely continuous measure changes for jump-diffusion processes, Ann. Appl. Probab. 15 (2005) 1713–1732. [30] D. Coculescu, M. Jeanblanc, A. Nikeghbali, Default times, no-arbitrage conditions and changes of probability measures, Finance Stoch. 16 (2012) 513–535. [31] P. Cheridito, D. Filipović, R.L. Kimmel, Market price of risk specifications for affine models: theory and evidence, J. Financ. Econom. 83 (2007) 123–170. [32] G.R. Duffee, Estimating the price of default risk, Rev. Financ. Stud. 12 (1999) 197–226. [33] G.R. Duffee, Term premia and interest rate forecasts in affine models, J. Finance LVII (2002) 405–443. [34] N. El Karoui, L. Martellini, A theoretical inspection of the market price for default risk, working paper, University of Southern California, 2001. [35] J. Driessen, Is default event risk priced in corporate bonds? Rev. Finance Stud. 18 (2005) 165–195. [36] R.A. Jarrow, D. Lando, F. Yu, Default risk and diversification: theory and empirical implications, Math. Finance 15 (2005) 1–26. [37] M.S. Paolella, Intermediate Probability: A Computational Approach, Wiley, Chichester, 2007. [38] P.J. Schönbucher, A note on survival measures and the pricing of options on credit default swaps, working paper, Department of Mathematics, ETH Zürich, 2003. [39] B. Wong, C.C. Heyde, On changes of measure in stochastic volatility models, J. Appl. Math. Stoch. Anal. (2006) 1–13. [40] M. Grasselli, C. Tebaldi, Solvable affine term structure models, Math. Finance 18 (2008) 135–153. [41] P. Carr, D.B. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance 2 (1999) 61–73. [42] C. Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann, Affine processes on positive semidefinite matrices, Ann. Appl. Probab. 21 (2011) 397–463. [43] E. Biffis, Affine processes for dynamic mortality and actuarial valuations, Insurance Math. Econom. 37 (2005) 443–468. |