Abstract
In geographical epidemiology, disease counts are typically available in discrete spatial units and at discrete time-points. For example, surveillance data on infectious diseases usually consists of weekly counts of new infections in pre-defined geographical areas. Similarly, but on a different time-scale, cancer registries typically report yearly incidence or mortality counts in administrative regions. A major methodological challenge lies in building realistic models for space-time interactions on discrete irregular spatial graphs. In this paper, we will discuss an observation-driven approach, where past observed counts in neighbouring areas enter directly as explanatory variables, in contrast to the parameter-driven approach through latent Gaussian Markov random fields (Rue and Held, 2005) with spatio-temporal structure. The main focus will lie on the demonstration of the spread of influenza in Germany, obtained through the design and simulation of a spatial extension of the classical SIR model (Hufnagel et al., 2004).
Dokumententyp: | Paper |
---|---|
Keywords: | Space-time interaction, Gaussian Markov random fields, epidemic modelling, stochastic differential equations, global SIR model, influenza |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1819-8 |
Sprache: | Englisch |
Dokumenten ID: | 1819 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |