Abstract
A measurement error model is a regression model with (substantial) measurement errors in the variables. Disregarding these measurement errors in estimating the regression parameters results in asymptotically biased estimators. Several methods have been proposed to eliminate, or at least to reduce, this bias, and the relative efficiency and robustness of these methods have been compared. The paper gives an account of these endeavors. In another context, when data are of a categorical nature, classification errors play a similar role as measurement errors in continuous data. The paper also reviews some recent advances in this field.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1821-5 |
Language: | English |
Item ID: | 1821 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |