DeutschClear Cookie - decide language by browser settings
Brezger, Andreas; Fahrmeir, Ludwig; Hennerfeind, Andrea (2005): Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping. Collaborative Research Center 386, Discussion Paper 456




Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models.