Abstract
Partial Least Squares (PLS) is a highly efficient statistical regression technique that is well suited for the analysis of high-dimensional genomic data. In this paper we review the theory and applications of PLS both under methodological and biological points of view. Focusing on microarray expression data we provide a systematic comparison of the PLS approaches currently employed, and discuss problems as different as tumor classification, identification of relevant genes, survival analysis and modeling of gene networks.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1826-2 |
Language: | English |
Item ID: | 1826 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |