Abstract
Laws in the special sciences are usually regarded to be non-universal. A theory of laws in the special sciences faces two challenges. (I) According to Lange's dilemma, laws in the special sciences are either false or trivially true. (II) They have to meet the ‘requirement of relevance’, which is a way to require the non-accidentality of special science laws. I argue that both challenges can be met if one distinguishes four dimensions of (non-) universality. The upshot is that I argue for the following explication of special science laws: L is a special science law just if (1) L is a system law, (2) L is quasi-Newtonian, and (3) L is minimally invariant.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Philosophy of Science |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
URN: | urn:nbn:de:bvb:19-epub-18415-0 |
Sprache: | Englisch |
Dokumenten ID: | 18415 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Mrz. 2014, 10:25 |
Letzte Änderungen: | 04. Nov. 2020, 13:00 |