Abstract
We propose a novel method to model nonlinear regression problems by adapting the principle of penalization to Partial Least Squares (PLS). Starting with a generalized additive model, we expand the additive component of each variable in terms of a generous amount of B-Splines basis functions. In order to prevent overfitting and to obtain smooth functions, we estimate the regression model by applying a penalized version of PLS. Although our motivation for penalized PLS stems from its use for B-Splines transformed data, the proposed approach is very general and can be applied to other penalty terms or to other dimension reduction techniques. It turns out that penalized PLS can be computed virtually as fast as PLS. We prove a close connection of penalized PLS to the solutions of preconditioned linear systems. In the case of high-dimensional data, the new method is shown to be an attractive competitor to other techniques for estimating generalized additive models. If the number of predictor variables is high compared to the number of examples, traditional techniques often suffer from overfitting. We illustrate that penalized PLS performs well in these situations.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1853-2 |
Language: | English |
Item ID: | 1853 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:46 |