Abstract
In this paper we introduce two stochastic volatility models where the response variable takes on only finite many ordered values. Corresponding time series occur in high-frequency finance when the stocks are traded on a coarse grid. For parameter estimation we develop an e±cient Grouped Move Multigrid Monte Carlo (GM-MGMC) sampler. We apply both models to price changes of the IBM stock in January, 2001 at the NYSE. Dependencies of the price change process on covariates are quantified and compared with theoretical considerations on such processes. We also investigate whether this data set requires modeling with a heavy-tailed Student-t distribution.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1869-4 |
Language: | English |
Item ID: | 1869 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:46 |