Abstract
In this paper, the space-varying coefficients model on the basis of B-splines (Heim et al., (2006)) is adapted to wavelet basis functions and re-examined using artificial and real data. For an introduction to diffusion tensor imaging refer to Heim et al. (2005, Chap. 2). First, wavelet theory is introduced and explained by means of 1d and 2d examples (Sections 1.1 { 1.3). Section 1.4 is dedicated to the most common thresholding techniques that serve as regularization concepts for wavelet based models. Prior to application of the 3d wavelet decomposition to the space-varying coe cient elds, the SVCM needs to be rewritten. The necessary steps are outlined in Section 2 together with the incorporation of the positive de niteness constraint using log-Cholesky parametrization. Section 3 provides a simulation study as well as a comparison with the results obtained through B-splines and standard kernel application. Finally, a real data example is presented and discussed. The theoretical parts are based on books of Gen cay et al. (2002, Chap. 1, 4-6), Härdle et al. (1998), Ogden (1997) and Jansen (2001) if not stated otherwise.
Dokumententyp: | Paper |
---|---|
Keywords: | Wavelets; Varying coefficient model; Diffusion tensor; Brain imaging |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1870-6 |
Sprache: | Englisch |
Dokumenten ID: | 1870 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:46 |