Abstract
Traditionally, syllogisms are arguments with two premises and one conclusion which are constructed by propositions of the form “All… are…” and “At least one… is…” and their respective negated versions. Unfortunately, the practical use of traditional syllogisms is quite restricted. On the one hand, the “All…” propositions are too strict, since a single counterexample suffices for falsification. On the other hand, the “At least one …” propositions are too weak, since a single example suffices for verification. The present contribution studies algebraic interpretations of syllogisms with comparative quantifiers (e.g., “Most… are…”) and quantitative quantifiers (e.g., “n/m… are…”, “all, except n… are…”). This modern version of syllogistics is intended to be a more adequate framework for argumentation theory than traditional syllogistics.
Dokumententyp: | Buchbeitrag |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Logic |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie
100 Philosophie und Psychologie > 160 Logik |
ISBN: | 3-8258-9356-1 |
Ort: | Wien |
Sprache: | Englisch |
Dokumenten ID: | 19084 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Mai 2014, 06:36 |
Letzte Änderungen: | 29. Apr. 2016, 09:16 |