Abstract
Quantum master equations are an important tool in quantum optics and quantum information theory. For systems comprising a small to medium number of atoms (or qubits), the non-truncated equations are usually solved numerically. In this paper, we present a group-theoretical superoperator method that helps solving these equations. To do so, we exploit the SU(4)-symmetry of the respective Lindblad operator and construct basis states that generalize the well-known Dicke states. This allows us to solve various problems analytically and to considerably reduce the complexity of problems that can only be solved numerically. Finally, we present three examples that illustrate the proposed method.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Philosophy of Physics |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie
500 Naturwissenschaften und Mathematik > 530 Physik |
Sprache: | Englisch |
Dokumenten ID: | 19163 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Mai 2014 06:46 |
Letzte Änderungen: | 29. Apr. 2016 09:16 |