Abstract
We consider a two-dimensional massless Dirac operator H in the presence of a perturbed homogeneous magnetic field B = B-0 + b and a scalar electric potential V. For V is an element of L-loc(p) (R-2), p is an element of(2, infinity], and b is an element of L-loc(q)(R-2), q is an element of(1, infinity], both decaying at infinity, we show that states in the discrete spectrum of H are superexponentially localized. We establish the existence of such states between the zeroth and the first Landau level assuming that V = 0. In addition, under the condition that b is rotationally symmetric and that V satisfies certain analyticity condition on the angular variable, we show that states belonging to the discrete spectrum of H are Gaussian-like localized.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Keywords: | Magnetic operator; localization; Dirac operator |
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-23156-1 |
ISSN: | 1664-039X |
Allianz-/Nationallizenz: | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. |
Sprache: | Englisch |
Dokumenten ID: | 23156 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Mrz. 2015, 10:38 |
Letzte Änderungen: | 13. Aug. 2024, 12:41 |